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Abstract— Recently, convolutional neural network (CNN) has
attracted tremendous attention and has achieved great success
in many image processing tasks. In this paper, we focus on
CNN technology combined with image restoration to facilitate
video coding performance and propose the content-aware CNN
based in-loop filtering for high-efficiency video coding (HEVC).
In particular, we quantitatively analyze the structure of the
proposed CNN model from multiple dimensions to make the
model interpretable and optimal for CNN-based loop filtering.
More specifically, each coding tree unit (CTU) is treated as
an independent region for processing, such that the proposed
content-aware multimodel filtering mechanism is realized by
the restoration of different regions with different CNN models
under the guidance of the discriminative network. To adapt the
image content, the discriminative neural network is learned to
analyze the content characteristics of each region for the adaptive
selection of the deep learning model. The CTU level control is
also enabled in the sense of rate-distortion optimization. To learn
the CNN model, an iterative training method is proposed by
simultaneously labeling filter categories at the CTU level and
fine-tuning the CNN model parameters. The CNN based in-loop
filter is implemented after sample adaptive offset in HEVC,
and extensive experiments show that the proposed approach
significantly improves the coding performance and achieves up
to 10.0% bit-rate reduction. On average, 4.1%, 6.0%, 4.7%,
and 6.0% bit-rate reduction can be obtained under all intra,
low delay, low delay P, and random access configurations,
respectively.
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I. INTRODUCTION

THE block-based compression framework has been widely
adopted in many existing image/video coding standards,

e.g., JPEG [1], H.264/AVC [2], AVS2 [3] and High Efficiency
Video Coding (HEVC) [4]. However, the block-based predic-
tion and quantization [1], [2], [4] in these existing compression
framework will introduce the discontinuities along the block
boundary, error information around texture contour, as well
as the loss of high frequency details, which correspond to
the blocking, ringing and blurring artifacts, respectively. The
strengths of these artifacts are important determinants of video
quality. Therefore, in-loop filtering plays a significant role
to promote the reconstruction quality of decoded video, and
the majority of state-of-the-art in-loop filtering algorithms are
investigated with such purpose.

To suppress the blocking artifacts in video coding,
the in-loop deblocking filters are investigated over the past
several decades [3], [5]–[9], the philosophy of which mainly
lies in designing low-pass filters to restrain the blocking
artifacts by adaptively smoothing the boundary pixels. More-
over, the strength of deblocking filtering can also be deter-
mined by comparing the discontinuities between adjacent
block boundaries with certain thresholds. The deblocking
filters are originally applied for 4 × 4 block boundaries in
H.264/AVC [2], [6]. The advanced deblocking filter is then
designed in HEVC [4], [5], which is able to accommodate the
quad-tree block partition process. Although deblocking filters
can reduce the blocking artifacts efficiently by smoothing the
boundary pixels, its application scope is restricted due to the
design philosophy that only boundary pixels are processed
while inner ones within a block have been largely ignored.
Obviously, it is difficult to be applied in handling other kinds
of artifacts (e.g., ringing and blurring). To compensate the
artifacts induced by block-based transform and coarse quanti-
zation, several novel in-loop filtering methods such as sample
adaptive offset (SAO) [10], adaptive loop filtering (ALF) [11]
and image denoising based method [12]–[17] were investi-
gated, all of which could efficiently remove the artifacts and
obtain better coding performance.

Recently, deep learning (DL) [18], especially CNN, has
been bringing revolutionary breakthrough in many tasks such
as visual and textural data processing. Deep learning based
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image restoration and denoising methods [19], [20] have also
achieved state-of-the-art performances. Regarding image and
video coding, which tend to become intelligence originated as
well, DL based coding tools have been widely investigated,
e.g., in the end-to-end image compression framework [21],
sub-pixel interpolation [22], [23], inter-prediction [24], in-loop
filtering [25], [26].

In this work, we aim to achieve the content-aware in-loop
filter via the multiple CNN models and the corresponding
discriminative network to well adapt to images with different
content characteristics. In summary, the contributions of this
paper are summarized as follows.

• A fully convolutional network architecture with inception
structure [27] is analyzed and designed to enhance the
quality of the reconstructed frame in video coding. With
the proposed CNN structure, a content-aware loop filter-
ing scheme based on multiple CNN models is proposed
for high efficiency video coding.

• We employ the discriminative network to adaptively
select the CNN model for each CTU. As such, the content
adaptive selection of the appropriate filtering parameter
is casted into a classification problem and solved with the
data-driven DL approach.

• We investigate an iteratively training strategy to learn
the multiple CNN models, which achieves simultaneous
learning of the near-optimal model parameters as well as
the content category. Extensive validations provide useful
evidence regarding the effectiveness of the proposed
approach.

The remainder of this paper is organized as follows.
Section II elaborates the related work of the in-loop filter-
ing technique and CNN based image restoration methods.
Section III makes quantitative analysis on the proposed single
CNN architecture. In Section IV, we present the proposed
content-aware in-loop filter based on multiple CNN models.
Extensive experimental results are reported in Section V.
In Section VI, we conclude this paper.

II. RELATED WORK

In this section, we briefly review the previous work related
to the proposed approach. In particular, the existing in-loop
filtering algorithms in the current video coding standards are
firstly discussed, following which we detail the CNN based
image restoration methods.

A. In-Loop Filtering in Video Coding

The quality degradation of the reconstructed video results
from the lossy video compression framework. In particular,
various kinds of artifacts are introduced in the block-based
transform coding framework. To alleviate those kinds of
distortions in the compression process, many in-loop filtering
approaches have been studied to enhance both the objective
and subjective quality. In this manner, better prediction effi-
ciency can also be provided in the predictive video coding
framework, in which previously filtered frames are used to
predict the current one. Existing in-loop filtering techniques
can be summarized from the following aspects.

• Deblocking Filter. Due to the quantization of block-
based coding, the prediction error cannot be completely
compensated. Therefore, the discontinuity often appears
along the block boundaries, especially under low bit-
rate coding circumstances. The design philosophy of
deblocking filter [28], [29] is low-pass filtering the
block boundaries to smooth the jagged and discontin-
uous edges or boundaries. Hence, deblocking filter has
been adopted as a core coding tool since the video
coding standards H.263+ [3], [5]–[9]. For low bit-rate
video coding, Kim et al. [29] proposed an algorithm
with two separate filtering modes, which are selected
by pixel behavior around the block boundary. Recently,
deblocking algorithms [30], [31] with higher flexibilities
were also presented to determine the filter strength by
content complexity estimation instead of boundary-pixel
thresholds.

• SAO and ALF. The deblocking filters cannot adequately
restore the quality degraded frame, since the inner pixels
have been ignored in the deblocking process. In view of
this, more in-loop filtering algorithms such SAO [10] and
ALF [11] were proposed, which potentially take all pixels
within each CTU into consideration. SAO belongs to the
statistical algorithm, and the key idea is to compensate
for the sample distortion by classifying the reconstructed
samples into different categories. Inspired by Wiener
filter theory [32]–[34], ALF aims to minimize distortions
between the original and reconstructed pixels and trains
the low-pass filter coefficients at the encoder. The coeffi-
cients are further transmitted to the decoder. To reduce the
overhead of filter coefficients, temporal merge mode [35]
and geometry transformation [36] were further investi-
gated to boost the coding performance of ALF.

• Image Prior Models. The natural image statistical
modeling has also pushed the horizon of in-loop
filtering techniques. Krutz et al. [37] utilized the high
order compensated temporal frames to improve the
quality of the current coding picture. Zhang et al. [14]
proposed a low rank based in-loop filter model which
estimates the local noise distribution for coding noise
removal. Ma et al. [13] investigated the non-local prior
of natural images to generate GSR for collaborative
filtering. To reduce the cost of transform coefficients
by smoothing the residuals in JEM, Galpin et al. [38]
modeled the errors induced by the clipping process
and designed component-wise clipping bounds for each
coded picture. Zhang et al. [39] explored a near optimal
filtering mechanism for high efficiency image coding by
iteratively labeling each pixel with near-optimal filters.

B. CNN for Image Restoration and Compression

Recently, efforts have been devoted to CNN based image
restoration, which has been proved to achieve the state-of-the-
art performance [40]. Zhang et al. [19] proposed a deep CNN
approach with residual learning for image denoising. In [41],
CNN was employed for ill-posed inverse problems in medical
imaging. It is also shown that CNN models also achieved obvi-
ous quality enhancement for JPEG compressed images [20].
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Fig. 1. Illustration of (a) network structure for depth analysis, N equals 7, 8, 9, 10, 11; (b) network structure of different connection unit types, each connection
block is replaced by the four connection units in Fig. 2; (c) the proposed single CNN structure, which is the parameter reduction version of (b) with no
performance degradation.

In addition to image restoration, preliminary yet very promis-
ing progress has been made in CNN based image/video com-
pression [25], [26], [42], [43]. It has been incroporated into
various modules in the hybrid video coding framework [22],
[44]. To enhance the inter-prediction accuracy in video coding,
Yan et al. [22] utilized a shallow CNN model for half-
pixel interpolation. Post-processing methods for reconstructed
video were explored in [25] and [43], all of which utilized
CNN for quality enhancement outside of the coding loop.
More specifically, Dai et al. [25] proposed VRCNN model
as post-processing for HEVC intra coding. Yang et al. [43]
investigated quality enhancement CNN (QE-CNN) under very
low bit-rate coding configuration and achieved significant
quality enhancement. The IFCNN [42], which firstly utilizes
the CNN as the in-loop filtering for video coding. However,
the unseparated training data and test data in [42] may result
in a lack of generalization ability. Moreover, the CNNs could
also be deployed for the view synthesis and restoration of
immersive media content [45]. In [26], a spatial-temporal
residual network (STResNet) was integrated into HEVC for
in-loop filtering for coding performance enhancement.

III. PROPOSED SINGLE CNN MODEL

In this section, we provide the designation philosophy and
multi-dimensional analysis for the detail architecture of our
proposed single CNN model. First, the extensive analysis for
network depth is provided. Second, the connection unit type
of CNN model is analyzed with respect to the aforementioned
network depth, where the inception structure with variable ker-
nel size is adopted. The performance of the proposed unit out-
performs the other connection units proposed in [25] and [46].
Finally, we propose the single CNN model by reducing the
number of parameters with no performance degradation on
the top of the analysis.

A. Network Depth Analysis

In general, the DL community shares the common and
simple philosophy that the deeper of the network, the better

performance can be achieved, especially for the high level
vision tasks [47], [48]. However, in the low-level problems
such as image restoration and in-loop filtering, the depth
should be determined by the network structure and specific
application. To better understand how the depth of network
influences the in-loop filtering performance, we conduct the
empirical analysis to explore the network performance with
different depths. We design several sets of plain networks with
different depth (N) which are composed of a stack of convo-
lutional (conv.) layers and Rectified Linear Unit (ReLU) [49]
as activation function (except for the last layer), as illustrated
in Fig. 1. It should be noted that there are 64 channels for the
first N − 1 layers for feature extraction and 1 channel for the
last layer to reconstruct the image. In particular, the N-layer
fully conv. network could be formulated as follows.

F0(X)= X, (1)

Fi (X)= ReLU(Wi ∗Fi−1(X)+bi), i = 1, 2, . . . , N −1 (2)

FN (X)= WN ∗ FN−1 + bN + X, (3)

where X is the input patch, and Wi and bi denote the weights
and bias of the i -th conv. layer respectively. The ∗ represents
conv. operation. In particular, it should be noted that there is
no pooling layers in the restoration model since the pooling
may cause irreversible loss of information which damages the
reconstructed quality.

Within our analysis, it is worth mentioning that for fair
comparison, except for the various depth of these networks,
we control all other variables, including the training set, patch
size, training hyper-parameters and hardware environment to
be identical. Without loss of generality, we set quantization
parameter (QP) to be 37 in our analysis. We first compressed
the BSDS-500 dataset [50] using HEVC with QP=37 then
randomly selected 380 images for training, 10 images for
validation and the remaining for testing. Each image is par-
titioned into 38 × 38 patches with stride 22 for training
and validation. Additionally, we deploy the trained model to
recover the HEVC-compressed test images. The restoration
ability of networks with various depth is shown in Table I,
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TABLE I

AVERAGE RESTORATION GAIN (dB) OF DIFFERENT
NETWORK DEPTH (N )

Fig. 2. Different connection unit type: (a) dropout_3 × 3_5 × 5:
variable kernel size for inception with dropout; (b) dropout_3×3_3×3: iden-
tical kernel size for inception with dropout; (c) identity_3×3_5×5: variable
kernel size for inception with identity connection; (d) identity_3 × 3_3 × 3:
identical kernel size for inception with identity connection. It should be noted
that the product in each subfigure denotes the concatenation operation.

from which we could learn that the networks with depth from
seven to eleven conv. layers have similar restoration ability.
However, the network of nine layers outperforms the others
with little margin. Hence, we choose the depth of network to
be nine in our model.

B. Proposed Connection Units

We illustrate the proposed connection unit as well as three
typical types of connection units from literatures in Fig. 2,
all of which contain inception structure. The major difference
for such four connection units lies in the kernel size of
inception structure and the residue connection type between
the input and output of the unit. Regarding the designation
of connection unit type, three major factors are considered
during designation. The first design philosophy is inspired
by the inception structure [27] which introduced the variable
conv. kernel size for different branches to extract variable-
size features. Second, following [51], relatively small receptive
fields (3 × 3 and 5 × 5) are adopted within our model for
more non-linearity. In addition, we further deploy the residue
connection [47] from the input to realize residual learning,
such that convergence speed during the training stage can be
accelerated.

As shown in Fig. 2(a), our proposed connection unit has
3 × 3 and 5 × 5 conv. kernels for two branches respectively.
Subsequently, the two branches are concatenated before out-
put (we deployed same padding mechanism for the conv.
to guarantee the consistent spatial resolution as the input
such that concatenation could be easily realized). Meanwhile,
the dropout connection is deployed between the input and
output of the unit (we define dropout probability to be 1).
The same kernel size (both 3 × 3) is utilized for two branches

TABLE II

AVERAGE RESTORATION GAIN dB OF FOUR DIFFERENT TYPES
OF CONNECTION UNITS IN FIG. 2

in Fig. 2(b). For Fig. 2(c) and (d), the kernel sizes for
conv. layers keep the same as Fig. 2(a) and (b) respec-
tively. The only difference is the residue connection becomes
identity connection (shortcut) between input and output of
each unit.

To validate the effectiveness of proposed connection units
against the other three different types, we conduct comparisons
for the restoration ability of the four different connection
types. For the fair comparison as in the previous stage, all
other variables are controlled except for the connection type.
The network depth is set to be 9 according to previous
analysis. As depicted in Fig. 1(b), each connection block is
replaced by the aforementioned units for restoration ability
comparison. The average PSNR gain of four models could
be found in Table II. It is clear that our proposed connection
unit type shows the best restoration ability in terms of PSNR
gain. Hence, this category of analysis shows the efficiency of
proposed connection unit type.

C. Parameter Reduction

Based on the previous two categories of quantitative com-
parisons, we have demonstrated that the network described
in Fig. 1(b), which is with depth of 9 and the multi-scale
inception structures (dropout_3 × 3_5 × 5 connection unit
type) can achieve the highest restoration performance.

However, since there are too many parameters and feature
maps in the optimal choice (64 channels for each layer),
there must be redundant kernels and it is not appropriate to
utilize excessive number of parameters for the in-loop filtering.
Hence, it is urgent and necessary for us to reduce the number
of parameters to achieve similar restoration performance. We
first reduce the number of feature map channels from 64 to
32 in each branch of droppout_3 × 3_5 × 5 unit and re-train
the model. It is worth noting that there is no max pooling in
our single CNN model since the max pooling operation will
lose the information and make it difficult for signal restoration.
Subsequently, the locations of first two dropout_3 × 3_5 × 5
units are changed into the 1st and 3rd layer. Finally, the 4th
dropout_3 × 3_5 × 5 unit in Fig. 1(b) is reduced into single
3 × 3 conv. layer to further reduce the number of conv. kernel
parameter. Hence, the structure of the proposed single CNN
model is shown in Fig. 1(c).

Analogous to the previous two subsections, in this analysis,
we also control all other variables and the only difference is
the network structure in Fig. 1(b) and Fig. 1(c). We plot the
restoration performance with different iterations for the two
models in Fig. 3. When evaluating the restoration performance
on the testing images, we could observe that the parameter-
reduced version (green curve in Fig. 3) only has negligible
performance loss comparing with the original optimal model
in Fig. 1(b) (red curve in Fig. 3).
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TABLE III

PARAMETER SETTINGS OF THE PROPOSED CNN MODEL

Fig. 3. Performance comparison with/without parameter reduction.

IV. CONTENT-AWARE CNN BASED IN-LOOP FILTERING

In this section, the proposed content-aware in-loop filtering
based on CNN is detailed, as shown in Fig. 4. In particular,
the CNN model applied for each CTU is derived totally
adaptive according to CTU content. As such, better coding
performance can be achieved with the locally adaptive in-loop
filtering. First, the network architecture of a single CNN model
for in-loop filtering is presented. Subsequently, the detailed
network configuration of each layer and the hyper-parameters
during training are presented. Due to the inherent limitation
of single CNN model, the multiple CNN model based in-loop
filtering is proposed to adapt different texture characteristics.
To optimally select the appropriate CNN model, a discrimina-
tive network is learned to infer the CNN model for each CTU.
Moreover, to simultaneously learn the network parameters and
model category, an iteratively training mechanism is further
introduced.

A. From Single Model CNN to Multiple Model CNN

The network architecture of the proposed single CNN model
is shown in Fig. 5. To provide a more intuitive interpretation
of the single model, the network configurations for each conv.
layer are illustrated in Table III. The sliding step (stride) value
is 1 pixel for each layer. To maintain the resolution consistency
before and after each conv. layer, zero padding is utilized. In
particular, the padding is 1 pixel for 3 × 3 conv. layers and
2 pixels for 5 × 5 conv. layers respectively. Each conv. layer
adopts ReLU for non-linearity activation except for the last
conv. layer (Eqn.(3)).

1) Single CNN Model Training: We utilize the BSDS-
500 dataset for our single CNN model training. All images in
BSDS-500 are compressed by the standard HEVC1 (HM-16.9)
with common test condition (CTC) in all intra (AI) config-
uration. To distinguish different quality levels, the networks

1The HEVC-compressed BSDS-500 dataset for training is provided at
http://jiachuanmin.site/Projects/CNNLF/TrainingData/

TABLE IV

HYPER-PARAMETERS SETTING FOR SINGLE CNN MODEL TRAINING

are individually trained in terms of different QP intervals.
In particular, we train the optimal CNN models for each
QP interval by employing all the training data compressed
with every QP in the corresponding interval. Specifically, each
QP interval contains 5 consecutive QP values. For simplicity,
we utilize the smallest QP value to denote the corresponding
QP interval in this paper. During inference, the model is
selected by mapping the QP value of current slice to the
closest QP interval, i.e., when the QP of current slice is 25,
then the model of QP=22 is used. The total dataset is splitted
into two folds: 380 randomly-selected images for training and
20 images for validation. To generate the training samples for
single CNN model, all compressed images are cropped into
38 × 38 small patches with stride 22.

Here, let (xi , yi ) denote the i -th training sample, where xi is
the HEVC compressed patch and yi denotes the corresponding
pristine one. Therefore, the objective function of the CNN
training is to minimize the Euclidean-loss function,

Ł(�) = 1

N

N∑

i=1

||�(xi |�)− yi | |22 + β||�||22, (4)

where � encapsulates the weights and biases of the network
and �(xi |�) denotes the single CNN model. Moreover, L2
norm regularization term in Eqn.(4) is introduced to prevent
overfitting during training, and β is the penalty factor. The
first-order gradient based method Adam [52] is chosen to
optimize the objective function, which is able to adaptively
adjust the gradient and updating the results for each parameter.

The widely adopted DL framework Caffe [53] is utilized
to train our models. Hyper-parameter settings of our proposed
single CNN model are listed in Table IV. The progressive
training methodology is adopted during training. Specifically,
we first train the model for interval QP=37 completely from
scratch and use it as the initialized network parameters to train
the model for smaller QP intervals, etc. The base learning rate
(base_lr) is set to be 0.1 for QP=37 while 0.01 for other QP
intervals. The hyper-parameter Gamma is the degradation fac-
tor for base learning rate, which implies that the learning rate
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Fig. 4. The framework of the proposed content-aware CNN based in-loop filtering within the hybrid coding framework of HEVC.

Fig. 5. Network structure of the proposed single CNN model where the droppout_3 × 3_5 × 5 unit has two separate branches with 3 × 3 and 5 × 5 kernel
size respectively.

discounts 50% every 15 epochs (Step size) during training. The
Momentum and Momentum2 are two hyper-parameters for
Adam when adaptively calculating gradients during training.
During the network training process, we first train the model of
each interval with a fixed learning rate (base_lr) for 50 epochs
and then use stepping learning rate (base_lr starts from 0.1)
for another 50 epochs until its convergence.

2) Drawbacks of Single CNN: For each CTU, the rate-
distortion (R-D) performance of the in-loop filtering can be
expressed as follows,

JCT U = �DCT U + λR, (5)

�DCT U = D�
CT U − DCT U , (6)

where D�
CT U and DCT U denote the distortion after and before

CNN based in-loop filtering,�DCT U is the distortion variation
after the CNN based in-loop filtering, R indicates the coding
bits for signaling the loop filter control flag, and the Langrange
multiplier λ controls the tradeoff between rate and distortion.
As such, the performance of the loop filtering is reflected
by JCT U , and lower JCT U indicates better restoration perfor-
mance. In Fig. 6, the quality variation map is illustrated, where
both quality improvement and degradation can be observed.
It is obvious that one single model is not able to handle the
diverse content in a frame, and there are also some areas
suffering from performance loss with the single CNN model.

To address this issue and improve the adaptability of the
in-loop filtering, we propose an advanced in-loop filtering
technique with multiple CNN candidate models. As such,
each CTU can adaptively select the optimal CNN model to
achieve better restoration performance. To offline learn the
CNN models, an iterative training scheme is proposed. More
specifically, the training samples can be classified into several

Fig. 6. Illustrations of the limitations of a single CNN model. Green CTUs
indicate performance improvement after filtering, and red ones correspond to
performances loss after filtering.

categories in a data-driven manner, leading to the multiple
CNN models that cover a wide range of content characteristics.
In order to derive the appropriate model for each CTU at both
encoder and decoder sides, a discriminative network is adopted
to infer the optimal CNN model, such that explicitly signaling
of the model index can be also avoided.

B. Discriminative Network for Model Selection

The discriminative network (Discrimnet) for CNN model
selection is implemented based on a light-weighted modifica-
tion of Alexnet [48]. The network structure of Discrimnet is
depicted in Fig. 7. More specifically, there are 5 conv. layers
(variable receptive fields, 11×11, 5×5 and 3×3) and 2 max-
pooling layers with kernel size 3×3. Batch normalization [54]
is also used after each pooling layer for faster convergence.
The numbers of feature map for each conv. layer are 96,
96, 192, 192, 128. It should be noted that we add ReLU
as the activation function after all conv. layers and fully
connected (fc) layers (except for the last fc layer). The stride
value for four conv. layers are 4, 2, 1, 1 and there is no padding
for the first two layers. More details regarding the descrimnet
can be found in Table V.



JIA et al.: CONTENT-AWARE CONVOLUTIONAL NEURAL NETWORK FOR IN-LOOP FILTERING 3349

TABLE V

PARAMETER SETTINGS OF THE DISCRIMNET

Fig. 7. The network structure for the discriminative neural network (N denotes the number of multimodels). The conv. kernel size and the corresponding
channel number (non-fc layer) or vector dimension (fc layer) are listed in the bottom.

Discrimnet takes each CTU as the input and produces
an N-dimension feature vector (i.e., (α1, α2, . . . , αN )) for
classification, where N denotes the number of CNN models.
To choose the best model from the candidate ones, softmax
operation ( f (αi ) = eαi∑N

j=1 α j
, i = {1, . . . , N}) is then applied

for each element of the N-dimension feature vector. And
optimal CNN model is determined by the index of largest
element after softmax. With the help of Discrimnet, the model
selection is casted into the classification problem and solved in
a data-driven manner. The training details of Discrimnet will
be introduced in the next subsection.

C. Multimodel Iterative Training Mechanism

To obtain the multiple CNN models, a novel training
scheme is proposed to iteratively optimize the CNN model
parameters and model categories simultaneously. The initial-
ization process of the proposed training mechanism is firstly
introduced, which includes the single CNN model training,
quality ranking of the restored images, and the fine-tuning.

• Single CNN Model Training. An initial single CNN
model is first trained with the training data from BSDS-
500, as described in Section III-A.

• Quality Ranking of the Restored Images. The learned
single CNN model is used to restore all training samples
generated from the BSDS-500 dataset. The quality differ-
ence in terms of peak-signal-noise-ratio (PSNR) before
and after single CNN filtering is calculated as follows,

�ψi = ψ̄i − ψi , (7)

where ψ̄i denotes the PSNR value of the i−th training
sample xi after single CNN model filtering, and ψi

denotes the PSNR before filtering. As such, all training
samples can be ranked by �ψi in the descending order.

• Fine-Tuning. To generate N initialized multimodels,
the ranked training samples are equally partitioned into
N-folds. Each fold of the partitioned training samples
is utilized to fine-tune the single CNN model. The
hyper-parameters for fine-tuning remain the same as
the single CNN model training. Hence, we can obtrain

Algorithm 1: Iterative Training Mechanism
Input: Initialized N CNN models, training samples (xi ,

yi ) generated from BSDS-500, iteration time K .
Output: N fine-tuned models.
m = 0;
while m < K do

for i in all training samples do
Filtering xi with each CNN model;
Obtain Idx(xi ) according to Eqn.(8);
Label xi with index Idx(xi ) for training sample
clustering;

end
for j from 1 to N do

Generate the j−th fold of training samples by
clustering samples with same index Idx(xi );
Fine-tune and update the j−th model with j−th
fold of clustered training samples;

end
m = m + 1;

end

N initialized CNN models after the convergence of the
fine-tuning process.

As such, we can obtain the N initialized CNN filter models,
based on which each training sample can be labeled with an
index,

Idx(xi) = arg max
j

[�ψ j ], j = 0, . . . , N − 1. (8)

The index Idx(xi) denotes the appropriate CNN model that
should be choosen to accommodate the content characteristics
of xi . It is also worth mentioning here only the distortion
is considered as the coding bit in R-D optimization can be
regarded as the constant when using different selected CNN
models.

1) Iterative Training Mechanism: Based on the initializa-
tion process, the proposed iteratively training mechanism is
achieved by fine-tuning the multiple CNN models and labeling
the index simultaneously within each iteration. The algorithm
is summarized in Algorithm 1.
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TABLE VI

SYNTAX ELEMENT DESIGN OF THE PROPOSED IN-LOOP FILTER

TABLE VII

HYPER-PARAMETERS SETTING FOR DISCRIMNET TRAINING

More specifically, in each iteration, the N CNN models are
fine-tuned by the adaptively partitioning the training samples,
such that the fine-tuned models can be optimized with different
texture characteristics. After the iterative training process,
the corresponding N CNN models can be obtained.

2) Training Discrimnet: Different from CNN models train-
ing, the Discrimnet adopts uncompressed color image dataset
(UCID) [55] to generate training samples. UCID contains
1, 328 images, and we randomly choose 1, 200 for training
and the remaining for validation. Again, all the test images
are first compressed by standard HEVC intra coding and then
cropped into 64 × 64 small patches. The compressed images
and the corresponding labels derived in Eqn.(8) are used for
training the Discrimnet. To train the Discrimnet, we directly
adopt the stepping learning rate strategy, starting from 0.1 with
a degradation factor 0.1 for every 10 epochs. The hyper-
parameter settings for Discrimnet are listed in Table VII.

D. Syntax Element Design for CTU Control Flag

To ensure the optimal performance in the R-D sense,
the syntax element control flags in CTU-level and frame-level
are particularly designed for the proposed in-loop filtering. For
CTU-level control, a flag is added for each CTU to enable the
proposed in-loop filtering to provide better local adaptation,
i.e., CTU_MMCNN_on[i ] for the i -th CTU. In particular,
when the rate-distortion performance of the filtered CTU
becomes better, the corresponding control flag is enabled,
indicating that the proposed in-loop filtering is applied to this
CTU. Otherwise, the flag is disabled and the proposed scheme
is not applied to this CTU. After the determination of all the
CTUs in one frame, the frame-level RD cost reduction for
each color channel is calculated as

Jc = Dc + λRc, J̄c = D̄c + λR̄c, (9)

where Dc and D̄c indicate the frame-level distortion before and
after the proposed in-loop filtering, respectively. Rc and R̄c

denote the coding bits of the two scenarios, and λ is the
Lagrange multiplier. If Jc > J̄c, the frame-level flag is enabled,
indicating that the proposed in-loop filtering is applied to
the current frame. As such, the corresponding frame-level
and CTU-level control flags are signaled into the bitstream.
Otherwise, the frame-level flag is disabled, and the CTU-level
control flags will not be further encoded.

Considering both the coding efficiency and complexity,
we propose to adopt the CTU-level control for luminance
component and frame-level control for chroma components
in the proposed scheme. The syntax element structure of the
control flags is shown in Table VI. All of the frame-level flags
are encoded within the slice header of the bitstream after
the syntax elements for SAO, and the CTU-level flags are
embedded into each corresponding CTU syntax. It should be
noted that if the frame-level flag for luma channel is false,
we do not send the CTU flags anymore since the filtering for
the entire frame is switched off.

V. EXPERIMENTAL RESULTS

To validate the efficiency of the proposed scheme, we inte-
grate the proposed content-aware in-loop filtering into the
HEVC reference software HM-16.9. In this section, both
objective evaluations and subjective visualizations are firstly
provided, and the BD-rate [56] performance of proposed
method is illustrated and compared with other CNN based
in-loop filter algorithms. Subsequently, the encoding and
decoding complexity as well as the run-time GPU memory
bandwidth usage are presented. Finally, we present the impact
of frame-level syntax by empirical analysis.

A. Testing Conditions

The Caffe [53] library is integrated into HM-16.9 to perform
the in-loop filtering with the CNN models. More specif-
ically, the proposed in-loop filtering is incroporated after
SAO process. The multiple CNN models are applied in the
luminance channel only, and the single CNN model is adopted
by the two chroma channels. Moreover, models for different
color components are trained independently in the proposed
method.

Four typical QP values are tested, including 22, 27, 32, 37.
The experiments are conducted under HEVC CTC with all
intra (AI), low-delay (LDB), low-delay P (LDP) and random
access (RA) configurations. The anchor for all experiments
is HEVC reference software (HM-16.9) with both deblocking
and SAO enabled. The HEVC test sequences [57] from Class
A to Class E are used, and the total length sequences are
compressed for performance validation. Moreover, the itera-
tion time K is set to be 2.

B. Objective Evaluations

The in depth objective evaluations are conducted in this
subsection from multiple perspectives. The BD-rate reductions
of the proposed single CNN model are shown in the first row
of Table VIII, where it can be observed that 3.0%, 3.9%, 3.7%
and 3.9% bit-rate savings can be achieved for AI, LDB, LDP
and RA configurations, respectively. The performances with
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TABLE VIII

OVERALL PERFORMANCE OF THE PROPOSED MULTIPLE CNN MODEL (N = 1, 2, 4, 6) IN-LOOP FILTERING (ANCHOR: HM-16.9)

TABLE IX

PERFORMANCE OF THE PROPOSED MULTIPLE CNN MODEL (N = 8) IN-LOOP FILTERING (ANCHOR: HM-16.9)

Fig. 8. Performance comparisons for different sequences with N = 8 (Anchor: HM-16.9). (a) BasketballDrill, AI; (b) K imono, AI; (c) Cactus, LDB;
(d) Kristen AndSara, LDB; (e) PartyScene, RA; (f) B QMall, RA; (g) BasketballDrill, RA; (h) Four People, RA.

the increasing of the number of CNN models (N = 2, 4, 6)
are reported in the second to the last rows of Table VIII.
We should note that the performance in Table VIII are the
overall average performance of Class A-E. It is obvious that
with a certain range of N , the coding performance grows with
the increasing number of CNN models, and the performance
becomes saturated when the number of models is larger
than 4. Moreover, the performance of the proposed scheme
(N = 8) with CTU level control for each sequence is shown
in Table IX. In particular, 4.1%, 6.0%, 4.7% and 6.0% bit-
rate reductions on average for luma channel under four differ-
ent coding configurations respectively. Based on Tables VIII
and IX, the effectiveness of the proposed CNN based in-loop
filtering method could be proved. With the growing number
of N , the proposed iterative training method also expresses

the content aware capability to adapt to different content
characteristics. Moreover, more than 10% bit-rate reduction
can be achieved in inter-coding for the sequence Four People.

In Fig. 9, the performance of the proposed scheme as well
as the upper-bound performance are plotted in terms of the
number of CNN models adopted (N). Here, the upper-bound
is achieved by selecting the best model through full R-D
based decision for all models at the encoder side. Under
such circumstance, the best model index is not signaled to
approach the ideal performance that can be obtained when the
discriminative model is 100% accuracy. From this figure we
can observe that the performance of the proposed scheme turns
out to be consistent when N > 6. Moreover, the performance
of the proposed scheme is quite close to the upper-bound per-
formance, which further provides evidence that the Discrimnet
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TABLE X

THE RATE-DISTORTION PERFORMANCE COMPARISON WITH VRCNN [25] AND VDSR [58] IN RA CONFIGURATION (ANCHOR: HM-16.9)

TABLE XI

THE LUMA PERFORMANCE COMPARISON BETWEEN ALF [11] AND PROPOSED METHOD (N = 8) (ANCHOR: HM-16.9)

Fig. 9. Variations of the BD-Rate performance with the number of models.
Dash line: performance of the proposed scheme; solid line: the corresponding
upper-bound performance.

is effective in selecting the appropriate CNN model for in-
loop filtering. The rate-distortion performance comparisons are
also depicted in Fig. 8, which show that the proposed method
achieves good generalization ability and obtains consistent
coding performance under different configurations.

Furthermore, we compare the proposed scheme with other
CNN structures using as in-loop filtering algorithms, including
VRCNN [25] and VDSR [58]. In particular, VRCNN is a five-
layer fully conv. network (FCN) and VDSR is with very deep
FCN intentionally designed for single image super-resolution
(SISR). From Table X, the proposed method achieves 6.0%
coding gain for luma component while the approaches in [25]
and [58] obtain 3.1% and 2.5% BD-rate reduction respectively.
It is clear that our proposed scheme outperforms these two rep-
resentative CNN based algorithms under RA configurations.

In addition, the performance comparison with non-CNN
based in-loop filter approach (such as ALF) is also conducted
to show the effectiveness of the proposed method. Specifically,
we compare the coding performance of ALF and proposed
method in terms of BD-rate reduction. It is worth mentioning
that the simulation platform is HM-16.9 with CTC and the
coding performance of luma channel is reported. From the
Table XI, we could learn that ALF obtains 2.0%, 2.7%, 4.0%
and 3.0% BD-rate reduction for the four different configura-
tions respectively while the proposed multimodel method saves
4.1%, 6.0%, 4.7% and 6.0% BD-rate for each case. Obviously,
the proposed approach outperforms the ALF and achieves
better coding efficiency. To further verify the performance
for both ALF and CNN base loop filter, we conduct another
set of experiments to show that the proposed method could
also achieve 2.9%, 3.7%, 3.8% and 3.6% BD-rate reductions
when ALF is also enabled (we should note that the CNN is
located between SAO and ALF in this category of experiment),
which convinces us that the proposed method is a competitive
coding tool for next generation video coding standard. From
the last four columns of Table XI, we could learn that the
CNN based loop filtering algorithm has the compatibility
with conventional Wiener filter based approach since it also
achieves promising coding gain on the top of ALF.

C. Subjective Evaluations

The subjective comparisons is usually necessary for evalu-
ating the loop filtering algorithms in video coding. In this sub-
section, we further compare the visual quality of reconstructed
frames in Fig. 10 and 11. Two frames from Basketball Drill
and Four People are used for illustration. The frame is also
cropped for better visualization. It is obvious that our proposed
scheme can efficiently remove different kinds of compression
artifacts due to the generalization ability of deep learning
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Fig. 10. Visual quality comparison for BasketballDrill with RA configuration, where the 9th frame is shown (QP=37). (a) Original; (b) VRCNN; (c) The
proposed scheme (N = 8).

Fig. 11. Visual quality comparison for Four People with LDB configuration, where the 16th frame is shown (QP=37). (a) Original; (b) VRCNN; (c) The
proposed scheme (N = 8).

based approaches. Moreover, scrupulous observers may find
that the degraded structures during block-based coding can
also be recovered by the proposed scheme, e.g., the texture
of floor and straight-lines. The underlying reason lies in that
our knowledge-based scheme is able to recover the missing
information. Moreover, the proposed network has the capabil-
ity of effectively representing high order information of the
visual signals and reconstructing the missing details, due to
larger parameter quantity and variable receptive field layers.
As such, the frames processed by the proposed scheme have
better visual quality than the state-of-the-art methods by a clear
margin.

D. Complexity

In this subsection, the encoding and decoding complexity as
well as the GPU memory consumption of the proposed scheme
are reported. To evaluate the time complexity of our algorithm,
we test the proposed algorithm with hyper-threading off and
record the encoding and decoding (enc/dec) time. The testing
environment is Intel i7 4770k CPU and the latest version of
Caffe is incroporated [53]. We utilize the NVIDIA GeForce
GTX TITAN X GPU for testing and the GPU-memory is
12 GB. Moveover, the operating system is Windows 10 64-
bit home basic and the memory for the PC is 24 GB. The
HEVC reference software and Caffe are compiled with the
Visual Studio 2013 ultimate version.

When evaluating the coding complexity overhead, the �T
is calculated as,

�T = T � − T

T
, (10)

where T is original enc/dec time of HEVC reference software
(HM-16.9) and T � is the proposed enc/dec time. All of the
complexity evaluations are conducted with GPU acceleration,
such that the forward operation of the CNN filtering and

Discrimnet is operated by GPU, and the remaining operations
are performed by CPU. From Table XII,we can observe that on
average the encoding complexity overhead is 113%, while the
decoding overhead is 11656%. The proposed scheme greatly
influences the decoding time because of the forward operation
in network and CPU-GPU memory copy operation. Moreover,
the fully-connected layer within Discrimnet also imposes great
complexity to the decoding process. The encoding complex-
ity for VDSR [58] and VRCNN [25] is 135% and 110%
respectively while the ALF [11] only increases 4% encod-
ing time with respect to HEVC baseline. And the decoding
complexity for the three methods are 13753%, 4459%, 123%
respectively.

The CNN model storage consumption and run-time GPU
memory bandwidth are also listed in Table XII. The model size
consists of three parts, Discrimnet, multi CNN models of luma
and single model for two chroma channels. It is also worth
noting that the model sizes are identical for AI, LDB, LDP
and RA configurations. Specifically, the size of each CNN
model is 1.38MB while each Discrimnet model is 10.80MB.
The total model size equals (N ×1.38+1.38+1.38+10.8MB)
where N is the model numbers. Hence, it takes 14.94∼20.6MB
to store the trained models for each QP interval. Regarding
VDSR [58] and VRCNN [25], the model size is 2.54MB
and 0.21MB respectively. Since the proposed method has
another Discrimnet for each case, which contains fc. layers for
classification. Hence, the average model size of the proposed
method is larger but still in a reasonable range than the
two existing method. As for GPU memory bandwidth usage,
370∼1428MB run-time GPU memory are needed when N
ranging from 1 to 8. VDSR [58] consumes 1022 MB run-time
GPU resources while that value of VRCNN [25] is 155 MB.
Further optimization can be realized by pruning as well as
decomposing the weight matrixes of the trained deep models
to speed up network forward operation.
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TABLE XII

ENCODING AND DECODING COMPLEXITY AND GPU MEMORY
CONSUMPTION OF THE DIFFERENT IN-LOOP

FILTERING APPROACHES

TABLE XIII

THE IMPACT OF FRAME-LEVEL SYNTAX

Regarding the potential investigations of fast algorithms in
the future work, there are particularly two major approaches
for decreasing the complexity. First, inspired by the recent
advances in neural network inference acceleration [59], [60],
we could deploy the related emerging techniques such as prun-
ing, weights quantization and matrix decomposition to avoid
the float-point operation in our current model, which could
significantly reduce the decoder run-time. Second, the infer-
ence of out trained CNN models relied on the third-party DL
framework. In our future work, we will reduce the overhead
introduced by the interaction between the HEVC codec and
the DL framework. With the two above methods, the run-time
complexity for the decoder is expected to be reduced.

E. Impact of Frame-Level Syntax

In the proposed method, the frame-level flags are used for
each channel. There are two major reasons for introducing
frame-level syntax for CNN based in-loop filtering. First,
we conducted empirical analysis to illustrate the effectiveness
of frame-level syntax. We keep the CTU-level flags the same
as the proposed method and always turn on the frame-level
syntax. The reference is the proposed single model in our
paper. As shown in Table XIII, if the frame-level syntax
is always turned on, the luma channel coding performance
loss will be 0.0%, 0.5%, 0.4% and 0.4% for AI, LDB,
LDP and RA configurations respectively. Moreover, we could
observe that the BD-rate keeps the same for AI configu-
ration. This is because no motion compensation is used in
intra coding hence there is no error propagation for the ill-
filtered frames. However, regarding the inter-coding cases,
the previously coded frames are used as reference frames for
motion compensation. Hence, we need the frame-level flag
mechanism to stop error propagation. From the experimental

results, we could also observe that the frame-level syntax is
more useful and necessary in the motion-compensation based
coding configurations including LDB, LDP and RA. Second,
since the SAO, which is an existing in-loop filtering coding
tool in HEVC, utilizes the frame-level to ensure the coding
efficiency. Similar rules and syntax designation should also be
applied for CNN based in-loop filtering techniques to keep the
design consistency with the coding tools in existing standards.
Hence, the frame-level flag is necessary.

VI. CONCLUSIONS

In this paper, we propose a content-aware CNN based
in-loop filtering algorithm for HEVC. The novelty of this
paper lies in that multiple CNN models are offline trained
and applied in the adaptive in-loop filtering process, and a
discriminative deep neural network is also trained to select the
optimal CNN model. Moreover, we provide the corresponding
quantitative analysis on the design philosophy of our pro-
posed filter network structure. The iterative training scheme
is further proposed to learn the optimal CNN models and
the corresponding content characteristics category for different
content simultaneously. Extensive experimental results demon-
strate that the proposed content-aware CNN based in-loop
filtering algorithm outperforms other DL based approaches,
achieving the state-of-the-art performance under HEVC CTC
configurations.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and
anonymous reviewers for their constructive comments that
significantly helped in improving the presentation of the man-
uscript of this paper and thank Dai et al. [25] and Kim et al.
[58] for kindly sharing their implementation for performance
comparison. The authors would also like to express their
gratitude to Shurun Wang and Shuaiyu Liang for the help of
running simulations.

REFERENCES

[1] G. K. Wallace, “The JPEG still picture compression standard,” IEEE
Trans. Consum. Electron., vol. 38, no. 1, pp. xviii–xxxiv, Feb. 1992.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560–576, 2003.

[3] S. Ma, T. Huang, C. Reader, and W. Gao, “AVS2? Making video coding
smarter [standards in a nutshell],” IEEE Signal Process. Mag., vol. 32,
no. 2, pp. 172–183, Mar. 2015.

[4] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[5] A. Norkin et al., “HEVC deblocking filter,” IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1746–1754, Dec. 2012.

[6] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz,
“Adaptive deblocking filter,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no. 7, pp. 614–619, Jul. 2003.

[7] G. Cote, B. Erol, M. Gallant, and F. Kossentini, “H.263+: Video coding
at low bit rates,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 7,
pp. 849–866, Nov. 1998.

[8] S.-M. Lei, T.-C. Chen, and M.-T. Sun, “Video bridging based on H.261
standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, no. 4,
pp. 425–437, Aug. 1994.

[9] L. Fan, S. Ma, and F. Wu, “Overview of AVS video standard,” in
Proc. IEEE Int. Conf. Multimedia Expo (ICME), vol. 1, Jun. 2004,
pp. 423–426.



JIA et al.: CONTENT-AWARE CONVOLUTIONAL NEURAL NETWORK FOR IN-LOOP FILTERING 3355

[10] C.-M. Fu et al., “Sample adaptive offset in the HEVC standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1755–1764,
Dec. 2012.

[11] C.-Y. Tsai et al., “Adaptive loop filtering for video coding,” IEEE J. Sel.
Topics Signal Process., vol. 7, no. 6, pp. 934–945, Dec. 2013.

[12] J. Zhang, D. Zhao, and W. Gao, “Group-based sparse representation
for image restoration,” IEEE Trans. Image Process., vol. 23, no. 8,
pp. 3336–3351, Aug. 2014.

[13] S. Ma, X. Zhang, J. Zhang, C. Jia, S. Wang, and W. Gao, “Nonlocal
in-loop filter: The way toward next-generation video coding?” IEEE
MultiMedia, vol. 23, no. 2, pp. 16–26, Apr./Jun. 2016.

[14] X. Zhang et al., “Low-rank-based nonlocal adaptive loop filter for
high-efficiency video compression,” IEEE Trans. Circuits Syst. Video
Technol., vol. 27, no. 10, pp. 2177–2188, Oct. 2017.

[15] X. Zhang, R. Xiong, X. Fan, S. Ma, and W. Gao, “Compression
artifact reduction by overlapped-block transform coefficient estimation
with block similarity,” IEEE Trans. Image Process., vol. 22, no. 12,
pp. 4613–4626, Dec. 2013.

[16] X. Zhang, W. Lin, R. Xiong, X. Liu, S. Ma, and W. Gao, “Low-
rank decomposition-based restoration of compressed images via adap-
tive noise estimation,” IEEE Trans. Image Process., vol. 25, no. 9,
pp. 4158–4171, Sep. 2016.

[17] X. Zhang, R. Xiong, W. Lin, S. Ma, J. Liu, and W. Gao, “Video compres-
sion artifact reduction via spatio-temporal multi-hypothesis prediction,”
IEEE Trans. Image Process., vol. 24, no. 12, pp. 6048–6061, Dec. 2015.

[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[19] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denoising,”
IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[20] C. Dong, Y. Deng, C. C. Loy, and X. Tang, “Compression artifacts
reduction by a deep convolutional network,” in Proc. IEEE Int. Conf.
Comput. Vis., Dec. 2015, pp. 576–584.

[21] J. Ballé, V. Laparra, and E. P. Simoncelli. (2016). “End-to-end
optimized image compression.” [Online]. Available: https://arxiv.
org/abs/1611.01704

[22] N. Yan, D. Liu, H. Li, and F. Wu. (2017). “A convolutional neural
network approach for half-pel interpolation in video coding.” [Online].
Available: https://arxiv.org/abs/1703.03502

[23] J. Liu, S. Xia, W. Yang, M. Li, and D. Liu, “One-for-all: Grouped
variation network-based fractional interpolation in video coding,” IEEE
Trans. Image Process., vol. 28, no. 5, pp. 2140–2151, May 2019.

[24] Y. Wang, X. Fan, C. Jia, D. Zhao, and W. Gao, “Neural network based
inter prediction for HEVC,” in Proc. IEEE Int. Conf. Multimedia Expo
(ICME), Jul. 2018, pp. 1–6.

[25] Y. Dai, D. Liu, and F. Wu, “A convolutional neural network approach for
post-processing in HEVC intra coding,” in Proc. Int. Conf. Multimedia
Modeling. Reykjavik, Iceland: Springer, 2017, pp. 28–39.

[26] C. Jia, S. Wang, X. Zhang, S. Wang, and S. Ma. (2017). “Spatial-
temporal residue network based in-loop filter for video coding.”
[Online]. Available: https://arxiv.org/abs/1709.08462

[27] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[28] B. Ramamurthi and A. Gersho, “Nonlinear space-variant postprocessing
of block coded images,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 34, no. 5, pp. 1258–1268, Oct. 1986.

[29] S. D. Kim, J. Yi, H. M. Kim, and J. B. Ra, “A deblocking filter with
two separate modes in block-based video coding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 9, no. 1, pp. 156–160, Feb. 1999.

[30] H. Jo, S. Park, and D. Sim, “Parallelized deblocking filtering of HEVC
decoders based on complexity estimation,” J. Real-Time Image Process.,
vol. 12, no. 2, pp. 369–382, 2016.

[31] H. Karimzadeh and M. Ramezanpour, “An efficient deblocking filter
algorithm for reduction of blocking artifacts in HEVC standard,” Int. J.
Image, Graph. Signal Process., vol. 8, no. 11, pp. 18–24, 2016.

[32] T. Kailath, “A view of three decades of linear filtering theory,” IEEE
Trans. Inf. Theory, vol. IT-20, no. 2, pp. 146–181, Mar. 1974.

[33] D. Slepian, “Linear least-squares filtering of distorted images,” J. Opt.
Soc. Amer., vol. 57, no. 7, pp. 918–922, 1967.

[34] S. O. Haykin, Adaptive Filter Theory, vol. 2. Upper Saddle River, NJ,
USA: Prentice-Hall, 2002, pp. 478–481.

[35] X. Zhang, R. Xiong, S. Ma, and W. Gao, “Adaptive loop filter with
temporal prediction,” in Proc. IEEE Picture Coding Symp. (PCS),
May 2012, pp. 437–440.

[36] M. Karczewicz, L. Zhang, W.-J. Chien, and X. Li, “Geometry
transformation-based adaptive in-loop filter,” in Proc. IEEE Picture
Coding Symp. (PCS), Dec. 2016, pp. 1–5.

[37] A. Krutz, A. Glantz, M. Tok, M. Esche, and T. Sikora, “Adaptive
global motion temporal filtering for high efficiency video coding,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1802–1812,
Dec. 2012.

[38] F. Galpin, P. Bordes, and F. Racape, “Adaptive clipping in JEM,” in
Proc. IEEE Data Compress. Conf. (DCC), Apr. 2017, pp. 33–41.

[39] X. Zhang, S. Wang, Y. Zhang, W. Lin, S. Ma, and W. Gao, “High-
efficiency image coding via near-optimal filtering,” IEEE Signal Process.
Lett., vol. 24, no. 9, pp. 1403–1407, Sep. 2017.

[40] L. Zhang and W. Zuo, “Image restoration: From sparse and low-rank
priors to deep priors [lecture notes],” IEEE Signal Process. Mag., vol. 34,
no. 5, pp. 172–179, Sep. 2017.

[41] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. (2016). “Deep
convolutional neural network for inverse problems in imaging.” [Online].
Available: https://arxiv.org/abs/1611.03679

[42] W.-S. Park and M. Kim, “CNN-based in-loop filtering for coding
efficiency improvement,” in Proc. IEEE Image, Video, Multidimensional
Signal Process. Workshop (IVMSP), Jul. 2016, pp. 1–5.

[43] R. Yang, M. Xu, and Z. Wang, “Decoder-side HEVC quality enhance-
ment with scalable convolutional neural network,” in Proc. IEEE Int.
Conf. Multimedia Expo (ICME), Jul. 2017, pp. 817–822.

[44] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, and D. Wang, “CU partition mode
decision for HEVC hardwired intra encoder using convolution neural
network,” IEEE Trans. Image Process., vol. 25, no. 11, pp. 5088–5103,
Nov. 2016.

[45] C. Jia, X. Zhang, S. Wang, S. Wang, S. Pu, and S. Ma, “Light field image
compression using generative adversarial network based view synthesis,”
IEEE J. Emerg. Sel. Topics Circuits Syst., to be published.

[46] Y. Zhang, T. Shen, X. Ji, Y. Zhang, R. Xiong, and Q. Dai, “Residual
highway convolutional neural networks for in-loop filtering in HEVC,”
IEEE Trans. Image Process., vol. 27, no. 8, pp. 3827–3841, Aug. 2018.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[49] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML),
2010, pp. 807–814.

[50] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, May 2011.

[51] K. Simonyan and A. Zisserman. (2014). “Very deep convolutional
networks for large-scale image recognition.” [Online]. Available:
https://arxiv.org/abs/1409.1556

[52] D. P. Kingma and J. Ba. (2014). “Adam: A method for stochastic
optimization.” [Online]. Available: https://arxiv.org/abs/1412.6980

[53] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 675–678.

[54] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448–456.

[55] G. Schaefer and M. Stich, “UCID: An uncompressed color image
database,” Proc. SPIE, vol. 5307, pp. 472–481, Dec. 2003.

[56] G. Bjontegaard, Calculation of Average PSNR Differences Between RD-
Curves, document ITU-T Q. 6/SG16 VCEG, 15th Meeting, Austin, TX,
USA, Apr. 2001.

[57] F. Bossen, Common Test Conditions and Software Reference Configura-
tions, document Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 5th Meeting,
Jan. 2011.

[58] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2016, pp. 1646–1654.

[59] S. Han, H. Mao, and W. J. Dally. (2015). “Deep compression:
Compressing deep neural networks with pruning, trained quantization
and Huffman coding.” [Online]. Available: https://arxiv.org/abs/1510.
00149

[60] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer. (2016). “SqueezeNet: AlexNet-level accuracy with
50× fewer parameters and <0.5MB model size.” [Online]. Available:
https://arxiv.org/abs/1602.07360



3356 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 7, JULY 2019

Chuanmin Jia (S’18) received the B.E. degree
in computer science from the Beijing University
of Posts and Telecommunications, Beijing, China,
in 2015. He is currently pursuing the Ph.D. degree
with the Department of Computer Science, Peking
University, Beijing.

In 2018, he joined the Video Lab, New York Uni-
versity, NY, USA, as a Visiting Student. His research
interests include video compression, light field com-
pression, and machine learning. He received the
Best Paper Award at the Pacific-Rim Conference on

Multimedia in 2017 at the IEEE Multimedia Magazine in 2018.

Shiqi Wang (M’15) received the B.S. degree
in computer science from the Harbin Institute
of Technology in 2008 and the Ph.D. degree in
computer application technology from Peking
University in 2014. From 2014 to 2016, he was
a Post-Doctoral Fellow with the Department of
Electrical and Computer Engineering, University
of Waterloo, Waterloo, ON, Canada. From
2016 to 2017, he was a Research Fellow with the
Rapid-Rich Object Search Laboratory, Nanyang
Technological University, Singapore. He is currently

an Assistant Professor with the Department of Computer Science, City
University of Hong Kong. He has authored over 40 technical proposals
in ISO/MPEG, ITU-T, and AVS standards. His research interests include
image/video compression, analysis, and quality assessment.

Xinfeng Zhang (M’16) received the B.S. degree in
computer science from the Hebei University of Tech-
nology, Tianjin, China, in 2007, and the Ph.D. degree
in computer science from the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
China, in 2014. From 2014 to 2017, he was a
Research Fellow with the Rapid-Rich Object Search
Lab, Nanyang Technological University, Singapore.
He is currently a Post-Doctoral Fellow with the
School of Electrical Engineering System, University
of Southern California, Los Angeles, CA, USA. His

research interests include image and video processing, and image and video
compression.

Shanshe Wang received the B.S. degree from the
Department of Mathematics, Heilongjiang Univer-
sity, Harbin, China, in 2004, the M.S. degree in com-
puter software and theory from Northeast Petroleum
University, Daqing, China, in 2010, and the Ph.D.
degree in computer science from the Harbin Institute
of Technology. He held a post-doctoral position
with Peking University, Beijing, from 2016 to 2018.
He joined the School of Electronics Engineering
and Computer Science, Institute of Digital Media,
Peking University, where he is currently a Research

Assistant Professor. His current research interests include video compression,
and image and video quality assessment.

Jiaying Liu (S’08–M’10–SM’17) received the B.E.
degree in computer science from Northwestern Poly-
technic University, Xi’an, China, in 2005, and the
Ph.D. degree (Hons.) in computer science from
Peking University, Beijing, China, in 2010.

She was a Visiting Scholar with the University
of Southern California, Los Angeles, from 2007 to
2008. She was a Visiting Researcher with Microsoft
Research Asia in 2015, supported by the Star Track
for Young Faculties. She is currently an Associate
Professor with the Institute of Computer Science and

Technology, Peking University. She has authored over 100 technical articles in
refereed journals and proceedings, and holds 28 granted patents. Her current
research interests include image/video processing, compression, and computer
vision. She has also served as a TC Member for the IEEE CAS-MSA/EOT
and APSIPA IVM, and was an APSIPA Distinguished Lecturer from 2016 to
2017. She is a Senior Member of CCF.

Shiliang Pu received the Ph.D. degree from the
University of Rouen in 2005. He is currently a
Chief Research Scientist with Hikvision and the
President of the Hikvision Research Institute. His
research interests include AI, machine perception,
and robotics.

Siwei Ma (M’03–SM’12) received the B.S. degree
from Shandong Normal University, Jinan, China,
in 1999, and the Ph.D. degree in computer science
from the Institute of Computing Technology, Chi-
nese Academy of Sciences, Beijing, China, in 2005.
He held a post-doctoral position with the University
of Southern California, Los Angeles, CA, USA,
from 2005 to 2007. He joined the School of Elec-
tronics Engineering and Computer Science, Institute
of Digital Media, Peking University, Beijing, where
he is currently a Professor. He has authored over

200 technical articles in refereed journals and proceedings in image and
video coding, video processing, video streaming, and transmission. He is an
Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY and the Journal of Visual Communication and
Image Representation.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


